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1 EXECUTIVE SUMMARY

The EWBysFleX2020 project aims at a larggeale deployment of solutions, including technical options, system
control and novel market designs to integrate a large share of renewable electricity, increasingly variable,
maintaining the security and reliability of theut®pean power system. The project results will contribute to
enhance system flexibility, resorting to both existing assets and new technologies in an integrated manner, basec
on seven European large scale demonstrators (WP 6, 7, 8 and 9). The overéill®bjed/P6 is the analysis and
demonstration of the exploitation of decentralized flexibility resources connected to the distribution grid for
system services provision to the TSOs; this objective is pursued by the means of three physical demonstrator
located in Germany, Italy and Finland, using different assets located at complementary voltage levels (high,
medium and low voltage) of the distribution grid. These demonstrations showcase innovative approaches in
flexibility management targeted to supportNfF Yy A YA &daA 2y &a8aiGSYy 2LISNII2NBQ
2LISNF G2NBQ o05{h0 ySSRa I yR {KSASEFNSEH2020 fhrikledpSjetId Rhéss a =
approaches are followed by the means of suitable system processes which have Iseeibete in terms of
System Use Cases (SUC) and presented in deliverable D6.1. The functionalities identified within the SUC modelli
have been mapped into four main software tools groups, namely forecast tools (D6.2), simulation tools (D6.3)
communicatia tools (D6.% and optimisation tools (D6.5), the development of which is the main goal of Task 6.3.
These tools are described in four corresponding deliverables: this deliverab, iD&art of this set and
addresses thenethods andoolswhich provideforecast informatiorandfirst resultsof these tools.

Forecasting became one of the most important disciplines in the energy systems. This is mainly due to the, stil
growing, amount of volatile, weather dependent renewable energy sources (RES) likengiphotovoltaic (PV)
plants. But also forecasts of consumers are becoming more and more important, since the regular household is
not behaving in regular patterns like it was about 50 years ago. The whole life has become more volatile and
consumers oftea becoming prosumers, meaning they also produce energy in their houses. Due to these reasons
plannable operation became even more important. Forecasts can help grid operators and energy markets to
schedule their actions, decide on operational strategied #ake the actions required. In addition, ENTSO
(European Network of Transmission System Operators for Elegiriaty agreed with the European National
Regulatory Authorities on processes call@@neration andLoad Data Provision Methodology (GLDPM) and
System Operation Guidelif€0O GL)n those, the determination of predicted grid states for the next 48 hours (or
even more) and the forecasting of load and generation are key pieces of information.

Within WP6 of EtBysFlex,advanced and innovative forecast methods are applied to-limlfield test
Demonstrators in order to enable an enhanced information exchange between the distribution system operator
(DSO) and transmission system operator (JT&®@ also to enable suffigieflexibility forecasts for aggregtarsn

this deliverable, the individual, and partly quite different, forecast approaches in the three physical
Demonstrators are described and compared with each other. The demonstrations have one common goal, all
three use information from forecast to make their individual operations and actions plannable and hence more
controllable For the Finnish demonstratiorthis means forecasting and optimizing the use of assets in order to
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sell flexibilities through an aggregattw TSO ancillary services and on the other hand to the reactive power needs
of a DSO. Thesassets and prosumeiare locatedin the low and medium voltage gridend include households
with electric heating, customescale batteries, officacale batterylargescale battery energy storage system
(BESS) and eleitt vehicles charging statiorie forecast and optimize the use of the assets in order to sell
flexibilities through an aggregator to the TSO ancillary services. On the other hand, Finnish datmoastrs for

a technical proof of concept for a reactive power market and therefore forecast is nelegéde DSOto
determinereactive and active power flows at the conncetion point of TSO and DS®@i(@Qw). The Italian and
German demonstrators also taat the interfaces between DSOs and TSID® aim is to determine acti@) and
reactive (Q) power flexibiliies at TR0 interface via optimization methods. The flexibiditgrovided byvolatile
renewable energy sources amsl thereforestrongly depadent onthe weather and raising the need oénergy
forecasts for theseenewableresources. All three Demonstrators use partly individual approaches but also for
some applications have similar basic assumptions and methods.

The German Demonstrator isdusing on the TSDSO interface between high voltage (HV) and extra high voltage
(EHV) grids. The aim is to provide-R&ibility to ensure a secure, stable and efficient grid operation. In this case,
a bottom up approach is used which forecasts enemyees from low and medium voltage grids and aggregates
them onto high voltage (HV)/medium voltage (MV) substations. With measurements at these substations,
residual load can be determined and be used to improve the forecasts via artificial intelligmhself learning
algorithms Furthermore, with machine learning approaches it is possible to forecast the consumption taking
place at the lower voltage levels. For the latter approdaimgShort-Term Memory (LSTM) models are utilized,
which takes advantagef historical time series. Generation is predicted via the usage of physical models and also
historical data in combination with information about weather conditions. Both approaches result in time series
for individual grid points (production and consutigm) which are then harnessed to generate complete future
grid states. These grid states serve as basis for optimization routines, which determifiegiBilty for usage in
distribution grids themselves, but also for transmission grid operations. fiddégbed time span is up to 72 hours

in this project.

The ltalian demonstration also deals with the 380 interface, but between HV and MV. (The grid levels
controlled by TSO and DSO are different in Germany and Italy.)

The aim of forecast in this cas® on the one hand estimation of current energy injection from PV plants and
dencentral generators (DG) in order to estimate current grid states and power exchange over HV/MV substations
(nowcast) and on the other hand, to forecast these generating uUnitshe next 72 hours. This current and
predicted information about generation at MV/LV and, in aggregated form, at HV/MV substations serve in
combination with standard load profiles for consumers as basis for operational planning and optimization
approctes. The basis for this forecast approach is built by physical models in combination with weather data. In
the project, these methods leads eventually to an enhanced observability for TSO and improved grid managemen
for DSO.
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Last but not least, ithe Fiy A 8 K 5SY2yaidNI G2NE GKNBS RAFTFSNBYG 1AYR
side: forecast othe electricityconsumption of electrically heated houses with large hot water tanks, forecast of
the expected flexibility of a set of public electriehicle charging stations and forecast of custorseale batteries
availability to the TSO ancillary markets. In addition, one forecast is created for the DSO to determine active anc
reactive power flow at the TSDSO connection point. In all cases, theetmst is strongly entangled with
optimization of the final predicted schedules. In order to rehehgoal of optimized use of flexbilitiedifferent
forecast approaches are used within this demonstration. Statistical analysis is, besides other teclusgdas,

the analysis and prediction of data for the determination of charging behaviour andiff@ws. In the latter

case, also machine learning techniques are utilized to train motefsggShortTerm Memoryl.STM) to the data

which then can predict such data. In order to analyse and model household electric heating consumption, physica
based models are set up and complemented with deep neural networks (DNN) for the residuals. First results are
promising and an resemble the expected behaviour.

In all three cases first applications and results (partly on real data, partly on simulated or generic data) show, that
the evaluated and applied approaches can fulfil the demands and requirements within the individual
Demonstrators. In a next step, the approaches will be implemented and deployed in order to use them in the field
test phase in E{$ysFlex.

12| 124



)‘ FORECAST: DATA, MBX*$ AND PROCESSINGOMMON DESCRIPTION
DELIVERABLES.2

EU-SysFlex

2 INTRODUCTION

In the electricity industry, a key challenge is to precisely balance the supply and consumptiectridiy and to
ensure the secur&ransmission andlistribution of energy from producers to consumers via the electricity grid. In
order to meet both requirements and to take and implement appropriate measures in time, it is necessary to
balancethe geneation and consumption in advance. Consumption behaviour has been known for a very long
time, as it shows a recurring pattern over time. In addition, wind power forecasts have been used for two
decades, and more recently also PV power forecasts, in oodgetermine the use of power plants in advance via
market mechanisms on the one hand, and to identify and eliminate congestion in the electrical grid at an early
stage on the other.

The forecasts were initially used by transmission system operatoranaheé electricity market sector. Due to the
increasingly high share of renewable energies, the existing concepts have reached their limits and new solution:
must be developed to improve the accuracy of the forecasts. Up to now, forecasts have been nizale wit
explicitly taking into account the network structures below the transmission grid. This approximation still works
well, but shows its limits with most renewable energy generation taking place in the distribution grids. The
European Regulation 2017/188establishing a guideline on electricity transmission system operation, therefore
requires distribution system operators to prepare forecasts and exchange them with other network operators and
in particular with the transmission system operators. Notyonind power forecasts and PV power forecasts play

a role here, but also forecasts of the vertical power flows which flow between the grid levels and which include
wind power, PV power, consumption and all other producers and consumers. These forecasislarged
between the grid operators and serve as input into forwdrdking grid calculations.

The primary source of uncertainty in these forecasts is the weather dependency. Therefore, weather forecasts are
an important input variable in power forecasg. Only for very shoiterm forecasts with a forecast horizon of a

few hours, direct measurements of the current performance are another input variable. In the coming years,
other influences will play an increasingly important role in the forecdsterventions in the generation of
renewable energies such as fead management, redispatch by renewable energies, electric vehicles, sector
coupling, flexible consumption, battery storage and many more must be represented in forecasts. In three
different denonstrators, various of the abowaentioned challenges will be investigated and tested.

2.1 WP 6 OBJECTIVES ARELATIONSHIPS BETWEESKS

WP6is one of the demonstration work packages within-&$Flex. It consists of three Demonstratees up in
Germany, taly and Finland. The main objectiieeto analyze and test the use of distributed flexibility resources,
with a focus on enabling provision of system services from resources connected to the distribution grids in
accordance with the requirements of DSO@&l & SOSTwo main requirementsre:

1. DSO and TSO need tolldbw the current policies for the decarbonization of the energy systems in
integrating large amount akenreable energy sourc€RE$in their grid structures.
2. The DSOs must ensure the security and resilience of their networks.
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For this, the DSOs nedibsides amadequateamount of "freedom" in the operation of their networkalso a
reasonable operational planning horizon in orderavoid overloads and restrictioria advance.Thiscan be
currently "superimposed" in certain operating conditions by requirements of TSOs, which have to take care about
the problems in their gridéke frequency stability or reverse power flows caused by the increase penetration of
RES. These partly contradictory requirements can be met by an improved cooperation between TSOs and DS(
dzaAy3 wo{Qa I OGABS | yYMRhtNS4d Ghiiek €iifobjecives SabetiderfifietbraviPé A (G A S .

- Improve TSEDSO coordination;
- Provide ancillary services to TSOs from distribution system flexibilities;
- Investigate how these flexibilities could meet the needs of both TSOs and DSOs.

Besides this, thélecisions made by the DSO needs to be made on a plannable basis. Since Wind andirPV feed
cannot be scheduled like conventional power plants, forecast methods are required in order to enable the grid
operators to archive the above objectives. Furthermahe consumption also needs improved forecasting due to

its significant influence on grid states, especially when electric vehilcles rise even more in number. The latter anc
possible distributed storage in households can also help reaching the above goals.

WP6 addresses these objectives through five interlinked tasks.6Thskfers to the required coordination of the

work package. Tagk2 focuses on the definition of System Use Cases (SUC) based on the Business Use Cas
(BUC) coming from W Within Tak6.3, systems and tools are being developed in order to set up the SUC. In
Task6.4, field tests are carried out in the three demonstrators. In addition, the results of these field tests will be
analyzed and common conclusions will be drawn in ®a&skA schematic overview of all the relationships
describedabove is depicted iRigurel.
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/W P6 Task 6.1 — Coordination between demonstrators \
|
[ !

Task 6.2 — Definition of System Use Cases
D6.1 - Demonstrators System Use Cases description

Task 6.3 — Development of system and tools

D6.2 - Forecast: data, methods, and processing. A common description

D6.3 - Grid simulations and simulation tools. Preliminary results.

D6.4 - General description of the used data as a basis for a general data principle.
D6.5 — Optimization tools and first applications in simulated environments

Task 6.4 — Demonstrators/field tests

Dé6.6 — Demonstrators for flexibility provision from decentralised resources, common view

D6.7 — German demonstrator-Grid node based optimization

D6.8 - Italian demonstrator-DSO support to the transmission network operation

D6.9 - Finnish demonstrator-Market based integration of distributed resources in the transmission system operation

Task 6.5 — Common vision and conclusion
D6.10— Opportunities arising from decentralized flexibility resources to serve the needs of the TSOs. Results

\ from the demonstrators /

FIGURE ¢ WP6 OVERVIEW ANRELATIONSHIPS WITHAEKS

The activities and achievements of each Task, and of the whole Work Package itself, will be presentedathrough
comprehensive set of Deliverables. In the following, they are shortly described, divided by Task:

- ¢l a1l cdH Aa5STFAYAGAR2Y 2F {eadSy ! asS /laSa¢y
w Deliverable 6.1 5 SY2y a( NI G2 NA | alONKarSySiza RIKESO NRLDMDARATEl (
Cases from WP3 into System Use Cases
- ¢l al cdo a5S@PSt2LIYSyld 2F aeadsSvya yR G22ftac¢y
w Deliverable 626 C2NB Ol adyY 5FGFY aSiK2Ra I yR prestisQea i A
description of requirements of the DECBO interface, in order to harmonize the data formats and
models for all the trials;
w Deliverable 6.3 DNA R & A Ydzf | (A 2y & prdseftR thel sy ozfults (ahoRtyhetwiork 2 f 3
models and simulations from the demonstrators;
w Deliverable 6.41 DSy SNIONARIG A 2Y 2F (KS dzaSR RIF G préséntst 6|
the description of communication interfaces between the actors involved in the demonstrators;
w Deliverable 6.5 h LIGAYAT FGA2y G22ta FyR ¥TANE&prdsdisitha Ol
description of the optimization tools and the range of flexibilities used in the demonstrators;
- ¢l &l co®n a5SY2yaiNyG2NBKFASEIR (Sada¢y
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w Deliverable 6.815SY2y a0 NI 62NBE TFT2NJ Ft SEAOAf AGE LINRPOAAASZ
presents the deployment plan, including technical specifications, procurement procedures for
technical equipment, timeline for installations, and monitoring procedures;

w Deliverable 6.7 DSNX Iy RSYRNFaR Ny IR 0 a frésentd Hé infaration G A 2
about the German demonstrator results, including the description of the working framework;

w Deliverable 6. & L G £ A 'y RSS{YnR y&dZINDIAININI G2 G KS ( NJ piesents & a A ;
the information about the Italian demonstrator results)cluding the description of the working
framework;

w Deliverable 6.9 CA Y Y A & K RSWARRef Badeddinted@aion of distributed resources in the
GNI yaYAdairzy apesdntS e igfdritatich abbud tiéi Einnish demonstrator results,
includingthe description of the working framework;

- ¢l al codp 4/ 2YY2Yy @GAaArz2y FyR 02yOQOfdzaAizyéy
583t A0SNIo6fS codmn AhLILRNIdzyAdGASa INAaAy3ad FTNRY |
2F GKS ¢{had wSadzZ Ga FTNRY (KS dSana gcorinehdat@dridh ¢
FNRBY GKS RSY2yaAdNIXd2NBRQ OGABAGASAET Ay 2NRSNJ
results.

The current deliverable D6@C2 NB Ol adY 5F (X aStiK2Ra I yRpatdBaSkSBa Ay
G 5vBlopme/ i 2 F & @ & ( STiaiscopeyofRis tasRi2td degeldp the algorithms and the software tools,
which embed the innovative functionalities and the corresponding requirements defined in the System Use Cases
presented in Deliverablé.1. Tasl6.3 deas with four groups of tools, divided by the type of application (forecast,
simulation, communication and optimization). They are presented and described in four corresponding
Deliverables (D6.2 to D6.5). This group of tools will be integrated in the dératmmsset-ups in order to carry out

the field tests, which are the scope of T&s# and will be described in a dedicated set of deliverables (D6.7, D6.8
and D6.9 respetively). This Deliverable (D§.8eals with the description of the developedid appled forecast
techniques. Tase forecast approaches utilizevariety of mathematical and physical model descriptions, ranging
from statistical analysis over usage of artificial intelligence approaches, to purely mathematical approaches. In
this deliverable, the applied methods will be described and first (sirad)atesults are presented.

2.2 SCOPEND OBJECTIVE OFSEELIVERABLE

The objective of this deliverable is to get a comprehensive overview of the different forecasts deveiititied

the German Italianand Finnishdemonstrator. Thereforgethe different faecast systems and their concepts are
described including the corresponding input data, the algorithm and modelling as well as the realization of these
forecast systemsnlorder to be able to classify the forecasts correctly, the need and the innovatifumexasts

are introduced.To complement this, the forecasaindtheir qualitiesare analysed and evaluated
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German demonstration

In the German Demonstratpthe provision of active and reactive power at DSO Highage gridlevel to the TSO

at extrahigh-voltage transmission grid in the form of@ flexibility ranges and maps is beeing determined via
optimization. These flexibility ranges and maps are based on the current state of the electrical network. This
planning is to be continued into the neartwe for a schedule based process, e.g. the next hours, for which
forecasts for the generators and loads in the high voltage grid as well as the underlying nvedtiage grid are
required. Theefore, forecast based on the voltage level below the highagstlevel, i.e. medium voltage level,

are included in order to forecast the verticabwer flow going into the high voltage level. This advanced
forecasting routine is being set up within the German demonstrator.

The forecast is especially important fire next few hours in terms of optimization. Therefore, the forecast
quality and accuracy must be very high tbis time range in particularin the German demonstrator, only
measurements at the interface between the mediwoitage grid and the high volig grid are available. These
measurements are an aggregation of all generators. However, the prediction is made for the individual grid
stationsin the mediumvoltage grid, broken down by the various generators and loads. In order to provide a high
quality forecast for the next hours, direct measurements at the generators and loads are required. As these are
not available, it is to be investigated whether a similarly good forecast can be made using other approaches, in
which the existigmeasurements are integrated.

Italian demonstration

This demonstration selip is applied in a portion of the Italian medium voltage distribution network; its main
scope is to exploit the controllable assets connected to distribution network for suppoaticdlary service
provision to the TSO. Its goal is to demonstrate that the already connected DERs plus some dedicated asse
(BESS, STATCOM) may be managed and sgditaically by the DSO in order to provide suitabl® Rexibility
rangefor TSO at prirary substation. This goal is pursued through the provision of aggregated reactive power
capability and a cumulative parametric curve (energy/cost) for active power. The concept of the aggregation of
flexible resources at distribution level is a substantielovation for the Italian national scenario. The aim of
simulations is to estimate how much flexibility could be achieved for different scenarios and to assess, which
range of flexibility could be actually exploited without violating the distributionweek constraints, i.e.
guaranteeing safe and efficient operations of the distribution network.

This demonstration will be accomplished by using a forecast instrument developed directliidtyilrizioneand
integrated with Central and Local SCADAs. This instrument is useful to support the monitoring and control of
distribution network to plan the activities (work, optimal schemes)etnd, consequently, act on the grid for
operating it. Considering thait also exploits weather forecast data for state estimation scopes, it is useful to
satisfy also the E8ysFlex obectives in managing flexibilities owned by the DSO and involved in the project in
addition to RES.
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Finnish demonstration

The Finnisitdemondrator deals with aggregator activities related to flexible resoulicemedium and low voltage
networks Its main scope is to manage the flexible resources, in order to allow them to be exploited in the TSO
ancillary service market and for reactive poveervices to the DSO. Its goal is to increase the reveanévalue
achievable from the operations of flexible assets and it is pursued through innovative aggregation approaches anc
a novel reactive power market concefthe forecasting in the Finnish demstration is divided in four different
forecasts, one forecast for the DSO (Helen Electricity Netwanllthree forecasts for the aggregatgHelen,

energy company in FinlahdThe main purpose of the forecasts for an aggregator is to forecast the deailab
flexiblility from the assets to the TSO ancillary servités. forecasts presented in this deliverable are created by
VTT, Technical Research Centre of Finland, and are based on information and historical data at Helen or at Hele
DSO as well on operath sources, such as solar radiation and outdoor temperatures.

The forecast for a DSO:

1 PQwindow compliance forecasting todrhe research question that the tool is targeted to answer is how
much reactive power services the DSO should procure frormtagket in order to minimize the costs
charged by the TSO when the exchanges between the distribution and transmission networks are out of
bounds. The created forecast is used in the technical proof of concept of a reactive power market.

The forecasts foan aggregator:

1 Forecast for households with electric storage heating that can be controlled through their Automatic
Meter Reading (AMR) systeniBhistool forecasts the heating needs throughout the day, but can also
predict how the heating system will ream changes and commands resulting from the operation of the
AMRconnected switches.

1 Flexibility forecast of electric vehicle (EV) charging stations: The forecast is intended to give an estimate of
how much capacity can be made available for specific etarkn this case, the target markets are the
frequency containment reserves (FCR) markets.

1 Forecast of customescale batteries availability to flexibility markefEhistool forecaststhe State of
Charge (SOC) of batteries installed in individual housisho

The scopes and goals described above, even if specifically focused to the needs of each demonstration, ar
f A3YySR 6AGK GKS 20SNIff 202S0GAQ0S 2F (K Ssecflexibiity A S
resources connected to thRA A G NA 6 dzi A2y 3INAR (2 &SNS HGdeBastyos aria 2 3
approaches described so far represent a part of the whole demonstratiorspsetso they may not completely

fulfil the WP6 objectives solely on their own, since the destrations activities in their entirety are targeted to

that. Besides this, it is clear from the above descriptions thatutilization and application of forecast itself and
further applications of isupport the Work Package objectives descriliededion 2.1, here reported again for
clarity:

1 Improvement of TSSO coordination

1 Provision of ancillary services to TSOs from flexibilities idli$tabution system.
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1 Demonstrating how flexibilities in the distribution grid can be used to meet the requirements of both DSO and
TSO.
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2.3 STRUCTURE OF THIBYERABLE

This deliverable is meant to be comprehensible and-aattained in content butsince it is part of the set of
deliverables in Task 6.3, it must be always considered as one part of a larger series.

The document structure is as follows:
1 Chapter3, 4 and5 describe the individual approaches, realizations and first resdilfsrecast within the
three differentdemonstrators from the three participating countries;
1 Chapter6 outlinesa comparison and overview of the afgpeesented forecast methods;
1 Chapter7, as a conclusive chapter, proviele summary and an outlook with ongoing research and open

questions.
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3 FORECASTING OF GEENE&N AND LOAPOR THEERMANDEMONSTRAIR

| 3.1 INTRODUCTION

In the German demonstatoan optimization of the electrical grid regarding active and reactive p@asewell as
congestiongs carried outby the DSO in the high voltagdistribution grid. One component of this optimization is
the generationand residualload forecastaggregated toindividual power transformerat high and medium
voltage level which are performed for both ind¢day and dayahead forecastsTherefore, aforecasttool is set
up, which should meet the new requirements of a vertigaWer flow forecast with a high spatial and temporal
resolution.Vertical power flow is defined as the power flow between grids with different voltage. level

So far in Germanyforecasts for wind ah PV generatiorhave usually been made for complete DSO and TSO
regions or, on the contranfor individual power plantsdaving an increasing focus on the local power grid, with
the goal of optimizing grid operations, the assumption of a copperplatedonecting wind andPV plants is no
longer valid.It is now a matter of individual cable strands connecting renewable energies ttrahsformer
stations to optimize the power flow with regard obngestions and reactive power deficils.order to be abldo
estimate these optimizations for the next hours and days, local forecasts for the reneveablegeded at the
MV/HV substations.

Onthe DSO level, the focus lies in the feiadrom medium to high voltage level and depends on the detail level
of the transformer station, the transformers or the busbardditionally, at tlose points, a greater mix of
produdioner and consumtion will occur, which can be summarizedagerticalpower flow.

Forecasting the feedn of renewable energies ishenough anyrare. The production of the other resources and
the consumption dbadsneed to be forecasted tacThisforecastingis done for every renewable energy type
separately and giva consistent sunat the end.

Some of the generators are connected to tmediumvoltage grid, the lowoltage grid or feed directly into the
highvoltage grid.The simplest case is the highltage grid, whee renewable energies are directly connected to
the transformerstations. Feeding into the mediunltage grid is more copiicated, since the configuration of
the grid may change at irregular intervals due to changes in the switching state of the grid, which must be taken
into account by the forecast algorithm.

The actual forecast must be madéthe medium and lowoltagelevels,where the generators are locateahd
then summed up, depending ae switching state othe grid, to provide the forecast dhe highvoltagelevel.

3.1.1 NEED FOR A FORECAST

In order to establish schedule based active and reactive power management for congestion management and
voltage control for transmission and distribution grid, it is imperative to predict future load flows in distribution
grid. In Germany DSOs operate WA/ and LV grids. Therefore,highquality forecast for the next few houis

infeed and load at grid connections in HV agfregated at HV/MV substatioase necessaryo predict future
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grid states. The german demonstration processes these forecastthargeith other grid data to optimise power
flow in future grid states.

3.1.2 INNOVATION OF THERELAST COMPARED XGSEING ONES

There are existing forecasting systems on the market that forecast theifeetivertical loads and renewable
energies.These often do not take into account the existing grid condition of the medium andditage grids
situated below the higtvoltage level. In this project, these structures are mapped in a high level of detail in the
forecasting system.

Due to the lack bmeasurementsn the medium and low voltage grid shortterm forecast is often not possible.
A new forecasting approach is therefore to be applied in the project, which allows atehorforecast to be

made that is adjusted every quarter of an houthe prevailingconditions.

3.2 DESCRIPTION OF RIRECASTINKROCESS

This chapter provides an overview of the forecasting system. First the concept of the system is introduced. This
includes a detailed description of what exactly is predicted and hovddns.

Then the unddying input data is described, followed the description of the used algorithms and at the end the
technicalrealizationtakes place The realization is divided into two steps. The first step defined in this deliverable
consideres lte implementation of the baseline model which will be extended in the expansion stage in a second
step. The results from thexparsion stage and the according implementation steps will then be discussed in
deliverable D6.7German demonstrator Grid hodebased optimization'

3.2.1 CONCEPT OF THE FG¥HONG SYSTEM

The optimisation of the gridtate is carried out in the higholtage grid but the generatorsthemselvesare
located in the mediunand lowvoltage grid and feed into the high voltage grid froinere. For this reason, the
vertical power flow on the busbars of the substatisnare forecastedat the transition from medium to high
voltage.

The verticalpower flow is decomposed in order to include the influence of the individual renewable energies.
Thedecompositionis divided intowind, PV and the residual load, which includes traditional power plants, loads
and due to the uniform energy supply: biogas power plahte active power iforecastedfor thesecomponents
separately whilethe reactive powe is forecastedor the complete vertical loadA schema of the forecast point

and decomposition with the related energy sources in the medium ano/@tage grid is shown iRigure2.
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FIGURR - SCHEMA OF THE FORECROINT AND THE REED ENERGY SOUREHS$E MEDIUM AND WOVOLTAGE GRID

In Figure 3 the different time contraints are described. The maximal lead time is 48 hours in advance in the
baseline model and will be extended to 72 hours in the expansion stage. According to the aénagotution of

the electrical grid the time step will be 15 minutes. iAitial time the calculation of the forecast begins, which
includes values which are valid at each forecast horizon within the interval from zero to the maximum lead time
After the calculation of the forecast is completettie forecastis deliveredwith a cetain delay atwall clock timé

The forecast is updated every 15 minutes to create an intraday forecast (update chhle).prediction
incorporates current measurements intodtprocess in order to determine near points in time more accurately.

In the baseline system this @ly done for the vertical loagl in the expansion stage the wind and PV forecasts
also use this data.

“lead time" "valid time"
0-72 hours

“timestep'
15 min.

forecast | forecast | | forecast | forecast | forecast I forecast | forecast | forecast | forecast I

calc
Delivery

delay of
delivery )
<7 min. | "wall clock time"

"update cycle"
15 min.
"initial time"

FIGURB: SCHEDULE OF THE FO¥$H

The forecasting system is based on several numerical weather mdtel€€osmeD2 and the ICOEUmodel of
the German Weather Service (DWD) and tR8 model of the European Centre for MediRange Weather
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Forecast{ECMWF). From the Cosfb@ and the ICORU model thedeterministic variant is used as well as the
ensemble version of the modef€osmeD2 EPS, ICGERU EPSyvhich albws the probabilistidorecast

In addition to the weather forecasts, the measurements of the current grid status are included, as already
mentioned above. However, these are only available at the transformers from medium to high voltage and not
directly at the busbar where #hpoints to beforecastedare located.

3.2.2 INITIAL DATA: MEASBRENTS, WEATHER FORETS AND META DATA

The forecasting system is based on forecasts of the weather models da2i{EPS), ICCEU (EPS)om German
Weather Servicand IFSrom European Cené for MediumRange Weather Forecasts

The Cosmd2 model was choserspecially for the intraday forecadtecause of its update cycle of three hours,
the high spatial resolution of 2.2 km and the close time delivery, i.e. the delay of delréch is only 1.5 hours.

The disadvantage of the model lies in the lovaximum lead timeof 27 hours for each model run. Only the 3
o'clock run has an extended lead time of 45 hoditss is just about the limit of the required 48 hours prediction
time required for the baseline versios@ that the next day can be completely covexed

In order to soften this limit, the ICOEU model is to be adddd the forecast procesm the expansion stag&his
modeloffers a maximum lead time of 120h hours at a spaBaolution of 6.5km across Europe.

Since each wind or PV generator is to be predicted individually, the high spatial resolution of the[bsmodel
should contribute to better reproduce spatial effects in tloeecast.

The IFS forecast model is addedthe list, as it is among the best European weather models in terms of forecast
quality. The spatial resolution of 9km together with the temporal resolution, a time step of three hours, is rather
low. However, this is compensated by the good forecsksls.

For thewind power prediction, the wind speeds atite wind directionsfor several heights up to about 120m
above groud are used as parameters from the weather moddlseseheigthsare chosenso that they cover
most hub feights of the installed windurbines. In addition, the temperature at the wind levels and the air
pressure are considered in an experimental status in order to include the effects of air density on the power
characteristics of the wind turbine$he P\Morecastuses direct and diffiesradiation from the weather models as
parameters.In the second version of the forecast system, measurements of power at the MV/HV points will be
included from wind farms/ PV plants, which are directly connected to the power sta#dhsmeasurementsat

the MV/HV pointsare 5 minutes snapshots and after 15 minutes a mean value is calculated which then is used as
input.

The residual load forecasir the active power s based on the forecast of the wind and PV power together with
the vertical power flow measurements at the MV/HV stations and general weather forecasts (pressure,
temperature, wind) For the typical load profiles, information such as the hour of the day and the position of the
sun are also includedror the reactive power a forecast is cteé based on the same input, only that the wind
and PV power forecasts are not included.

The meta data contain among other things information about the EEG energy source at either the substation or
the underlying local grid stations with according cooadés, the summerized installed capacity at the station and
the plant type andkey at the local grid station#ll these infoamrtion are connected to the so called prediction
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point which is either a transformer or a busbar for which the forecast is thanleabd. Additional information
includes which one of two transformers at one station is used and also if the grid station is operated in ring
operation or not. This meta data is delivered regularly every few days as a table extract from a database of
Mitnetz.

3.2.3 ALGORITHMS AND MODEG

When setting upa forecasting system, it is possible to choose either statistical or physical approaches for the
individual modelsd predict generation andonsumption Here, as dimitation, the historical measurements use

for the training of the models only contain the sum signaalbthe individual geneators/loads connected tothe
transformer. Thereforethe forecast isplittedin a part forecasting wind andVanda part forecastinghe residual

loads, which contain tloads and other power sourcasd apply two different types of modelthe physicaland

the statistical approachewhich are described below.

PHYSICAL APPROACR FBE WIND AND PV\RER FORECASTS
For the wind andPVforecast aphysical approach was chosafith this physical approach, a first guess forecast

for the histaical time span can be createdhis is then subtracted from the data measured at the transformer
station and the resulting power time series is used for trainthe residual model, which is then based on
machine learning procedures.

The physical model for the wind and PV forecast is based on the approach Bhylseal Grid Model (PGM),
introduced in context of the research projdetitz et al. (2017)t is used here in a slightly modified variant:

The wind power andPVforecast is first calculated on the grid points of the weather model and output as a
normalized value.

{ro. terr kvlc,\\,
N\ CS/ :'Zc).'\.uh:ﬂ ’
U, el é é

ot 15"(: 3

BN+ Oy XY+ G,y X

loss \aa, x “ﬂ*\*"“s‘baﬁ’a

vefleckion |

l l \a«,wm«m v:\'t N

\ flax — . irr o diotion ”
N ! | \
éﬁ /o b P

soulln it wny \e module

'S AT \.L'Ur\ i !-mpl?hk\hrt_
FIGURRE - SCHEMATIC REPRESHNINMOF THE PV FORECKN®IDEL

25| 124



)‘ FORECAST: DATA, MBX*$ AND PROCESSINGOMMON DESCRIPTION
DELIVERABLES.2

EU-Sys

Then the grid is interpolated to the actual power plants and scaled with the nominal power of the generators.
The conversion of wind speed into power or irradiation into power ésdfore carried out with universal models,
i.e. for wind the universal power cunfeom the Tradewind projediicLean (2008js taken as a first approach and
the PV model uses theSPSrom the Faunhofer IEE described BaintDrenan et al. (2015and scheratically
shown inFigure4.

The normalized power values on the grid points have to be interpolated on the single dlhistss done with

radial basis functions, which allows later an additional selective spatiahtirgig depending for example on the

local orography or special weather situations. In the basic version of the forecast, the interpolation is set to a
symmetrical radial basis function covering 2x2 gridpoints.

Of the wind turbines and Ppanels only the ated power is known in addition to the location. Therefore, the
PGM has been extended to handle combinatiarfsdifferent parameterizationsFor wind these would be
scenarios for different hub heights and for solar different orientations of the modulesseThcenarios are then
combined according to local wind arRl plant statistics, as seen iRigure5 for the model chain wind as an
example.
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Beneath the deterministic part, a probability forecast for wind &\dvill beincluded in the expansion stage. This
is based on the Cosmio2 EPS Ensemble weather modédere oftenthe spread of thedifferent members
(weather predictions) in the weatheznsembles isiot sufficient for the power forecastTherefore, it will be
calibrated with historical data at transformer stations, evh either only wind or PV fedd takes placeThe
results are then transferred to the other grid nodes in the nearby region.
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In orderto include the measurements ie shortterm forecasts, a new method based ensembleforecasts is
developed.Therefae, measuremers at transformer sation with only wind or PMeed-in should be used to
weight the ensemble member according to the bestiriigt member for the last hours. Thesesights are than
used to create deterministic short time forecasts based onwleghted ensembles for the surrodimg wind and

PV plantsThus, measurements of the last hours are used to create a local improved forecast for the region.
After interpolation on the coordinates of the plants, the summation of all producer at each tnanef is
calculated with a matrix, basedn meta data, provided by the DSO, which includes the relationship between
power producers and busbarén the special event of ring circuits, when a producer is assigned to two
transformers, the matrix contains aeighting for both transformers based on the impedance of the power lines.
Based on this wind an@Vforecast a first guess forecast for the historical data is calculated for each transformer
station. By substracting the shortest forecast of these wind RWbrecasts from the historical measurements at
the transformer, the residual load is calculated and used to train the model.
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STATISTICAL APPROACR THE RESIDUAIADGORECASTS

For the residual load forecgsthown inFigure6 and Figure7, the Long Shofferm Memory (LSTMMHochreiter
and Schmidhuber (19973s machine learning algorithm model is choseshich is a special typaf (recurrent)
neural networks for the basic syste Recurrent neural networfRumelhart et al. (1986)Yfemember their past

and are normally used for time series modelling.
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Depending on the availability of input data three differemises are distinguished for the residual load forecast.
The firstoneis the combination ofwo inputs, the weather forecasts on the one hand and on the other hand the
last 24 hour measurenmas of the vertical power flowBoth other two strategies with jughe weather forecasts

or just the measurements as input can be used as a fall back or redundancy strategy, if either the weather
forecasts or the measurements are not available. But for the baseline only the first approach isinsednly

the modelsfor this approach are already trained.hére some of the measurements are not available during the
last 24 hours, first ofll an interpolation method is choseto keep the process running-or a deep neural
network (DNN) the input data is usually separated into several batches whddméswith a generator function.

The used DNN model architecture can be seeFRigure8. At the beginning, there are two input layers which
describes the vertical power flow and the residual load respectively (input_1) on the one hand the weather
forecasts (input_2)After the LSTM layers which use recurrent dropout andcanecatenated with both inputs,

two fully connected layerare used with a pending dropout layer. The usage of recurdropout and the
additional dopout layer are used in order to prevent overfittingnd at last a fully connected output layer is

used.
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mput_1: InputLayer nput_2: InputLayer
Y
Ietm 1: LSTM Ietm 2: LSTM
 J y
lealky_re lu_1: LeakyReLU lealky re Iu_2: LealkyReLU

NS

concatenate _1: Concatenate

Y

denze 1: Dense

 J

denze 2: Dense

Y

dropout_1: Dropout

Y
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FIGURB - LSTM MODEL ARCHITERE

As activation function thé.eakyRectified LineatUnit 'LeakyReLUWor the LSTM layer is appliechich suited lest
the range of the input data and for the denselynnected layers 'ReLUR¢ctfied Linear Unitis used.

For the optinizationthe 'Adam' optimizer with the loss metric of the mean absolute efdAE is used.For
these hyper parameters some values are chosen pédin the paper 'LSTM: A Search Space Ody$Gegff et

al. (2017)Jand partly from experiences gained in different experiments connected to other projEaésresults
are additionally compared and verified with a hyper parameter optimization withAatomated Machine
Learning (AutoMLapproach investigat by Salz in the mastéheses'Hyperparameter Tuning mit AutoML far
Zeitreihenprognosen inEnergiesektor{Salz (2020)] There it could be shown that the used hyper parameter
areleadingareleading to similar results than the results from the AutoML apgroac

There are stillother ongoing investigations in several master thesis which deal amutoML architecture
searchto find the best model architecture which is an add to the hyper parameter optimization with AutoML

and also with transfer learning hetransfer learning approacfiPan and Yang (20103 setup, which should deal

with the extreme changes in the characteristics of the transformer behaviour due to e.g. dynamic grid topologies,
changes in the installed assets and maintezeat the trarsformers itself. This approadonsiders the influences

of the horizontal power flow between several related transformére results from these master thesis should
complete the modein canbination with a regularupdate process in order to facilitate eghmodification of the

grid topologies
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In the update process the previous trained model is retrained assuming that new measurements are available at
least on a daily basis. This update process is rg¢e every day to capture theost recent changes.

All theseapproactes arestill investigated and it is not yet sureflifey will be added inthe expansion stag® the
baseline methodor the demonstrator

3.24 REALIZATION OF THERECAST SYSTEM

According to the functional splitting of the forecasts thalization will also be done itwo separate software
systems: ae System for the wind arféVforecast, another for the residual loads.

First have a look at the data flows: In the operational model, the systems get meta data about the producers and
the state of the grid for the mapping of theroducer to transformer in ragar base every few days as table dump
from a databaseThis has to be processed to create current assignment matrices, as well as saved with change
time to get a history for a tar improvement of the modelsThe processing is done in a relational database with

an additional toolbox for ardhing the historical changeshe size of the meta data is limited and can be
processed in under 30 seconds, which goes well with the schedule, bataasebe processed in parallel to the
main forecast processing.

A second data flow delivers the actual state of the grid concerning vertical loads at the medium/high voltage
transformers as file in CINbrmat, which are neded for the intraday forecasfhese ClMstructured files have to

be parsed to the systems. Originally the processing time was over 10 minutes, but could bedrémlinzdf a

minute to a minute(depending on file size) by using external libraries. This is still a relevant time factoasiw

be considered.
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FIGURE: DATA FLOW BETWEESIO AND THE TWO FGRET SYSTEMS (EXTERDATA FROM THE WE#R SERVICES IS NOT
INCLUDED)

The actual wind/PMorecast is then calculated under MATLARh the forecast framework ForEx (Forecast
Experiments) of the Fraunhofer |IE®r the German demonstratohé forecast has to be done for 549 wind farms
and 7364 solar plantsv S3 I NRAYy 3 (GKS RSY2yaidNIhé 2dkidation tighePstofldat NB
exceed two minutes. Therefore, processing is distributed among individual modules that are permanently
available in the memory to avoid staup times of the forecast. The orchestration is done by a central scheduler.
In this way the calculation timeould bereduced drastically to fulfil the requireménof being faster thatwo
minutes.

Once the wind/PYorecast has been completed, it is transferredMiitnetz(DSO@and to the I@ad forecast system

in parallel which is shown figure9. This is done to the DSO internally via ftps due to security reasons.

The prediction is then used to determine the residual from the measured power at the transfsmérat the
resdual load model can use it as an input. The load forecast is set up under Python. After completing this
forecast, it will also be transferred tditnetz, where the optinization process is then started.

3.3 FORECASTING RESULTS

Since the realization of the forecast into the demonstrator is still in progress and will be discussed in the
deliverable D6.7, results are only presented for the vertical power flow forecast as a pre step of the residual load
forecast.This measthat we do not differentiate between generation and load yet, but use theasurements at

the MV/HV stations to train the LSTM based models. The data preparation, usage and the evaluation of these
models are followng the same steps as for the residual load fostcaodels except that for this the wind and PV
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